Waveforms
Waveforms are essential ingredients for generating the Rydberg Hamiltonian. By controlling the waveforms of $\Omega$, $\Delta$, and $\phi$, one can prepare the ground states of certain target Hamiltonians and study their non-equilibrium dynamics. Bloqade supports several built-in waveforms and allows the users to specify waveforms by inputting functions. It also supports different operations of waveforms, such as waveform smoothening, composing, and more.
The generated waveforms can be directly used to build the time-dependent Hamiltonians. Please see the Hamiltonians section for more details.
Creating Waveforms
In Bloqade, the waveforms are defined as a Waveform
object, which is a created by providing a callable object and a real number duration
:
Bloqade gives users the flexibility to specify general waveforms by inputting functions. The following code constructs a sinusoidal waveform with a time duration of 2 μs:
using Bloqade, Bloqade.CairoMakie
waveform = Waveform(t->2.2*2π*sin(2π*t), duration = 2);
Bloqade.plot(waveform)
In our documentation, we use the CairoMakie
for plotting.
Bloqade supports built-in waveforms for convenience (see References below). For example, the codes below create different waveform shapes with a single line:
waveform = piecewise_linear(clocks=[0.0, 0.2, 0.5, 0.8, 1.0], values= 2π* [0.0, 1.5, 3.1, 3.1, 0.0]);
Bloqade.plot(waveform)
waveform = piecewise_constant(clocks=[0.0, 0.2, 0.5, 0.7], values= 2π*[0.0, 1.5, 3.1]);
Bloqade.plot(waveform)
waveform = linear_ramp(duration=0.5, start_value=0.0, stop_value=2π*1.0);
Bloqade.plot(waveform)
waveform = constant(duration=0.5, value=2π*2.1);
Bloqade.plot(waveform)
waveform = sinusoidal(duration=2, amplitude=2π*2.2);
Bloqade.plot(waveform)
In some cases, users may have their own waveforms specified by a vector of clocks and a vector of signal strengths. To build a waveform from the two vectors, we can directly use the functions piecewise_linear
or piecewise_constant
, corresponding to different interpolations.
clocks = collect(0:1e-1:2);
values1 = 2π*rand(length(clocks));
wf1 = piecewise_linear(;clocks, values=values1);
values2 = 2π*rand(length(clocks)-1)
wf2 = piecewise_constant(;clocks, values=values2);
fig = Figure(size=(960, 400))
ax1 = Axis(fig[1, 1])
ax2 = Axis(fig[1, 2])
Bloqade.plot!(ax1, wf1)
Bloqade.plot!(ax2, wf2)
fig
For more advanced interpolation options, please see the JuliaMath/Interpolations package.
Operations on Waveforms
Bloqade also supports several operations on the waveforms.
Waveforms can be sliced using the duration syntax start..stop
, e.g.:
wf = 2π*sinusoidal(duration=2.2);
wf1 = wf[1.1..1.5];
Bloqade.plot(wf1)
Note that time starts from 0.0
again, so the total duration is stop - start
.
Waveforms can be composed together via append
:
wf2 = linear_ramp(;start_value=0.0, stop_value=1.1*2π, duration=0.5);
waveform = append(wf1, wf2);
Bloqade.plot(waveform)
where the waveform wf2
is appended at the end of wf1
.
Sharp points in waveforms may result in bad performance in practice (e.g. for adiabatically preparing a ground state of a target Hamiltonian). It is sometimes preferred to smoothen the waveform using the moving average methods. One can use the smooth
function to create a smoothened waveform from a piecewise linear waveform:
wf = piecewise_linear(clocks=[0.0, 2.0, 3.0, 4.0], values=2π*[0.0, 3.0, 1.1, 2.2]);
swf = smooth(wf;kernel_radius=0.1);
fig = Figure(size=(960, 400))
ax1 = Axis(fig[1, 1])
ax2 = Axis(fig[1, 2])
Bloqade.plot!(ax1, wf)
Bloqade.plot!(ax2, swf)
fig
Waveform Arithmetics
Bloqade also supports several arithmetics on the waveforms. If two waveforms have the same duration, we can directly add up or subtract the strength of them, simply by using +
or -
:
wf1 = linear_ramp(;duration=2.2, start_value=0.0, stop_value=1.0*2π);
wf2 = sinusoidal(duration = 2.2, amplitude = 2.2*2π);
wf3 = wf1 + wf2;
wf4 = wf1 - wf2;
fig = Figure(size=(960, 400))
ax1 = Axis(fig[1, 1])
ax2 = Axis(fig[1, 2])
Bloqade.plot!(ax1, wf3)
Bloqade.plot!(ax2, wf4)
fig
To increase the strength of a waveform by some factors, we can directly use *
:
wf = linear_ramp(;duration=2.2, start_value=0.0, stop_value=1.0*2π);
wf_t = 3 * wf;
fig = Figure(size=(960, 400))
ax1 = Axis(fig[1, 1])
ax2 = Axis(fig[1, 2])
Bloqade.plot!(ax1, wf)
Bloqade.plot!(ax2, wf_t)
fig
Such operations can also be broadcasted by using .*
:
wf2, wf3 = [2.0, 3.0] .* wf1;
fig = Figure(size=(960, 400))
ax1 = Axis(fig[1, 1])
ax2 = Axis(fig[1, 2])
Bloqade.plot!(ax1, wf2)
Bloqade.plot!(ax2, wf3)
fig
References
BloqadeWaveforms.Waveform
— Typestruct Waveform{F,T<:Real}
Type for waveforms. Waveform
s are defined as a function combined with a real number duration.
Fields
f
: a callable object.duration
: a real number defines the duration of this waveform; default unit isμs
.
BloqadeWaveforms.Waveform
— MethodWaveform(f; duration::Real)
Create a Waveform
object from callable f
, the unit of duration
is μs
.
Example
julia> Waveform(duration=1.5) do t
2π*(2t+1)
end
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Float64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
┌────────────────────────────────────────┐
4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
1 │⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
julia>
Intervals.:..
— Functionfunction (..)(first, last)
Exported from Intervals
, creates a closed interval from first..last
and can be used with Waveform
structs to obtain a slice of a Waveform's values, with the waveform slice's time adjusted to begin at 0 μs and the duration being last - first
.
Example
julia> wf = Waveform(t->2.2*2π*sin(2π*t), duration = 2)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Int64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
┌────────────────────────────────────────┐
3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⡴⠋⠙⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠋⠙⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⡼⠁⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⢰⠃⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⢀⡏⠀⠀⠀⠀⠀⠀⢸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡏⠀⠀⠀⠀⠀⠀⢸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⡼⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
value / 2π (MHz) │⠧⠤⠤⠤⠤⠤⠤⠤⠤⠼⡦⠤⠤⠤⠤⠤⠤⠤⠤⢤⠧⠤⠤⠤⠤⠤⠤⠤⠤⠼⡦⠤⠤⠤⠤⠤⠤⠤⠤⢤│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⡞│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⢸⠁│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⠀⠀⠀⢀⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⠀⠀⠀⢀⠇⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⠀⠀⢀⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⠀⠀⢀⡞⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⣄⣠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⣄⣠⠞⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀│
-3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
julia> wf[0.9..1.5]
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Float64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
┌────────────────────────────────────────┐
3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⠤⠔⠒⠒⠒⠦⢤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠞⠉⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠲⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⢦⡀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⣄⠀⠀⠀│
value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⣠⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⡀⠀│
│⠀⠀⠀⠀⠀⠀⢀⡜⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦│
│⠉⠉⠉⠉⠉⡽⠋⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│
│⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⢀⡴⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀0.6⠀
BloqadeWaveforms.sample_values
— Functionsample_values(wf::Waveform, clocks; offset::Real = zero(eltype(wf)))
sample_values(wf::Waveform; offset::Real = zero(eltype(wf)), dt::Real = 1e-3)
Samples of waveform wf
values obtainable by either providing an iterable clocks
containing exact time values to sample from or providing offset
and dt
values which specify the offset to add to the beginning and end of the waveforms time span and the step between time values.
See also sample_clock
julia> wf = linear_ramp(duration=0.5, start_value=0.0, stop_value=2π*1.0);
julia> sample_values(wf,0.0:0.1:0.5) # sample waveform values from range
6-element Vector{Float64}:
0.0
1.2566370614359172
2.5132741228718345
3.7699111843077517
5.026548245743669
6.283185307179586
julia> sample_values(wf; dt=5e-2) #5e-2 time gap between each sampled valued
11-element Vector{Float64}:
0.0
0.6283185307179586
1.2566370614359172
1.8849555921538759
2.5132741228718345
3.141592653589793
3.7699111843077517
4.39822971502571
5.026548245743669
5.654866776461628
6.283185307179586
BloqadeWaveforms.sample_clock
— Functionsample_clock(wf::Waveform; offset::Real = zero(eltype(wf)), dt::Real = 1e-3)
Generates range of time values based on wf
's duration with dt
time between each time value along with offset
time added to the beginning and end of the waveform's time span.
See also sample_values
julia> wf = sinusoidal(duration=2, amplitude=2π*2.2); # create a waveform
julia> sample_clock(wf;) # range from 0.0 to 2.0 with step of 0.001 (default arg)
0.0:0.001:2.0
julia> sample_clock(wf; offset=0.1) # offset beginning and end by 0.1
0.1:0.001:2.1
julia> sample_clock(wf; dt = 2e-3) # set step size of 2e-3
0.0:0.002:2.0
BloqadeWaveforms.piecewise_linear
— Functionpiecewise_linear(;clocks, values)
Create a piecewise linear waveform.
Keyword Arguments
clocks::Vector{<:Real}
: the list of clocks for the corresponding values.values::Vector{<:Real}
: the list of values at each clock.
Example
julia> piecewise_linear(clocks=[0.0, 2.0, 3.0, 4.0], values=2π * [0.0, 2.0, 2.0, 0.0])
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Float64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
┌────────────────────────────────────────┐
2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⡀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀│
value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀│
│⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀│
│⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⡀⠀│
│⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀│
│⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡆│
0 │⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀4⠀
BloqadeWaveforms.piecewise_constant
— Functionpiecewise_constant(;clocks, values, duration=last(clocks))
Create a piecewise constant waveform.
The number of elements in clocks
should be one greater than the number of elements in values
. For example, if you wanted to define a piecewise constant waveform with the following:
- 0.0 2π ⋅ MHz from 0.0 to 0.5 μs
- 1.0 2π ⋅ MHz from 0.5 to 0.9 μs
- 2.1 2π ⋅ MHz from 0.9 to 1.1 μs
It would be expressed as: piecewise_constant(clocks=[0.0, 0.5, 0.9, 2.1], values=[0.0, 1.0, 2.1])
Keyword Arguments
clocks::Vector{<:Real}
: the list of clocks for the corresponding values.values::Vector{<:Real}
: the list of values at each clock.duration::Real
: the duration of the entire waveform, default is the last clock.
Example
julia> piecewise_constant(clocks=[0.0, 0.2, 0.5, 0.9], values=2π * [0.0, 1.5, 3.1])
┌────────────────────────────────────────┐
4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡖⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⢰⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⣀⣀⣀⣀⣀⣀⣀⣀⣸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀0.9⠀
BloqadeWaveforms.piecewise_linear_interpolate
— Functionpiecewise_linear_interpolate(waveform;[max_vale=Inf64,max_slope=Inf64,min_step=0.0])
Function which takes a waveform and translates it to a linear interpolation subject to some constraints. The function returns a piecewise linear waveform. if the Waveform is piecewise linear only the constraints will be checked.
Arguments
waveform
: 'Waveform' to be discretized.
Keyword Arguments
min_step
: minimum possible step used in interpolationmax_slope
: Maximum possible slope used in interpolationatol
: tolerance of interpolation, this is a bound to the area between the linear interpolation and the waveform.
BloqadeWaveforms.piecewise_constant_interpolate
— Functionpiecewise_constant_interpolate(wf::Waveform; min_step::Real=0.0, atol::Real = 1.0e-5)
Converts wf
to a piecewise_constant
waveform subject to min_step
(the smallest allowable time step) and tolerance atol
.
BloqadeWaveforms.linear_ramp
— Functionlinear_ramp(;duration, start_value, stop_value)
Create a linear ramp waveform.
Keyword Arguments
duration::Real
: duration of the whole waveform.start_value::Real
: start value of the linear ramp.stop_value::Real
: stop value of the linear ramp.
Example
julia> linear_ramp(;duration=2.2, start_value=0.0, stop_value=1.0 * 2π)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Float64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
┌────────────────────────────────────────┐
1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3⠀
BloqadeWaveforms.constant
— Functionconstant(;duration::Real, value::Real)
Create a constant waveform.
Keyword Arguments
duration::Real
: duration of the whole waveform.value::Real
: value of the constant waveform.
BloqadeWaveforms.sinusoidal
— Functionsinusoidal(;duration::Real, amplitude::Real=one(start))
Create a sinusoidal waveform of the following expression.
amplitude * sin(2π*t)
Keyword Arguments
duration
: duration of the waveform.amplitude
: amplitude of the sin waveform.
LinearAlgebra.norm
— FunctionLinearAlgebra.norm(x::Waveform;p::Real=1)
Defines the norm function on Waveform
type.
BloqadeWaveforms.append
— Functionappend(wf::Waveform, wfs::Waveform...)
Append other waveforms to wf
on time axis.
BloqadeWaveforms.smooth
— Functionsmooth([kernel=Kernel.gaussian], f; edge_pad_size::Int=length(f.clocks))
Kernel smoother function for piece-wise linear function/waveform via weighted moving average method.
Arguments
kernel
: the kernel function, default isKernels.gaussian
.f
: aUnion{PiecewiseLinear, PiecewiseConstant}
function or aWaveform{<:Union{PiecewiseLinear, PiecewiseConstant}}
.
Keyword Arguments
kernel_radius
: radius of the kernel.edge_pad_size
: the size of edge padding.
BloqadeWaveforms.smooth
— Methodsmooth(kernel, Xi::Vector, Yi::Vector, kernel_radius::Real)
Kernel smoother function via weighted moving average method. See also Kernel Smoother.
Theory
Kernel function smoothing is a technique to define a smooth function $f: \mathcal{R}^p → \mathbf{R}$ from a set of discrete points by weighted averaging the neighboring points. It can be written as the following equation.
\[Ŷ(X) = \sum_i K(X, X_i) Y_i / \sum_i K(X, X_i)\]
where $Ŷ(X)$ is the smooth function by calculating the moving average of known data points $X_i$ and $Y_i$. K
is the kernel function, where $K(\frac{||X - X_i||}{h_λ})$ decrease when the Euclidean norm $||X - X_i||$ increase, $h_λ$ is a parameter controls the radius of the kernel.
Available Kernels
The following kernel functions are available via the Kernels
module:
Kernels.biweight
; Kernels.cosine
; Kernels.gaussian
; Kernels.logistic
; Kernels.parabolic
; Kernels.sigmoid
; Kernels.triangle
; Kernels.tricube
; Kernels.triweight
; Kernels.uniform
Arguments
kernel
: a Julia function that has methodkernel(t::Real)
.Xi::Vector
: a list of inputsX_i
.Yi::Vector
: a list of outputsY_i
.kernel_radius::Real
: the radius of the kernel.
BloqadeWaveforms.Kernels.biweight
— Functionbiweight(t)
Biweight kernel function for smoothing waveforms via smooth
The function is defined as:
\[f(t) = \frac{15}{16}(1 - |t|^2)^2\]
when $|t| ≤ 1$. Otherwise, $f(t) = 0$.
BloqadeWaveforms.Kernels.cosine
— Functioncosine(t)
Cosine kernel function for smoothing waveforms via smooth
The function is defined as:
\[f(t) = \frac{π}{4}\cos\left(\frac{π}{2}t\right)\]
when $|t| ≤ 1$. Otherwise, $f(t) = 0$.
BloqadeWaveforms.Kernels.gaussian
— Functiongaussian(t)
Gaussian kernel function for smoothing waveforms via smooth
.
The function is defined as:
\[f(t) = \frac{1}{\sqrt{2π}}e^{-\frac{1}{2}|t|^2}\]
BloqadeWaveforms.Kernels.logistic
— Functionlogistic(t)
Logistic kernel function for smoothing waveforms via smooth
The function is defined as:
\[f(t) = \frac{1}{e^{t} + 2 + e^{-t}}\]
BloqadeWaveforms.Kernels.parabolic
— Functionparabolic(t)
Parabolic kernel function for smoothing waveforms via smooth
The function is defined as:
\[f(t) = \frac{3}{4}(1 - |t|^2)\]
when $|t| ≤ 1$. Otherwise, $f(t) = 0$.
BloqadeWaveforms.Kernels.sigmoid
— Functionsimgoid(t)
Sigmoid kernel funciton for smoothing waveforms via smooth
The function is defined as:
\[f(t) = \frac{2}{\pi (e^{t} + e^{-t})}\]
BloqadeWaveforms.Kernels.triangle
— Functiontriangle(t)
Triangle kernel function for smoothing waveforms via smooth
.
The function is defined as:
\[f(t) = 1 - |t|\]
where $|t| ≤ 1$. Otherwise, $f(t) = 0$
BloqadeWaveforms.Kernels.tricube
— Functiontricube(t)
Tricube kernel function for smoothing waveforms via smooth
The function is defined as:
\[f(t) = \frac{70}{81}(1 - |t|^3)^3\]
when $|t| ≤ 1$. Otherwise, $f(t) = 0$.
BloqadeWaveforms.Kernels.triweight
— Functiontriweight(t)
Biweight kernel function for smoothing waveforms via smooth
The function is defined as:
\[f(t) = \frac{35}{32}(1 - |t|^2)^3\]
when $|t| ≤ 1$. Otherwise, $f(t) = 0$.
BloqadeWaveforms.Kernels.uniform
— Functionuniform(t::T) where {T}
Uniform kernel function for smoothing waveforms via smooth
The function returns $1$ for $|t| ≤ 1$. Otherwise, it returns $0$.